skip to main content


Search for: All records

Creators/Authors contains: "Itami, Kenichiro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The stepwise chemical reduction of a molecular warped nanographene (WNG) having a negatively curved π‐surface and defined C80H30composition with Cs metal used as the reducing and complexing agent allowed the isolation of three different reduced states with one, two, and three electrons added to itsπ‐conjugated system. This provided a unique series of nanosized carbanions with increasing negative charge for in‐depth structural analysis of consequences of controlled electron charging of non‐planar nanographenes, using X‐ray crystallographic and computational tools. The 3D molecular electrostatic potential (MEP) maps identified the negative charge localization at the central part of the WNG surface where selective coordination of Cs+ions is confirmed crystallographically. In‐depth theoretical investigation revealed a complex response of the WNG to the stepwise electron acquisition. The extended and contorted π‐surface of the WNG undergoes subtle swinging distortions that are accompanied by notable changes in the electronic structure and site‐dependent aromaticity of the resulting carbanions.

     
    more » « less
  2. Abstract

    The stepwise chemical reduction of a molecular warped nanographene (WNG) having a negatively curved π‐surface and defined C80H30composition with Cs metal used as the reducing and complexing agent allowed the isolation of three different reduced states with one, two, and three electrons added to itsπ‐conjugated system. This provided a unique series of nanosized carbanions with increasing negative charge for in‐depth structural analysis of consequences of controlled electron charging of non‐planar nanographenes, using X‐ray crystallographic and computational tools. The 3D molecular electrostatic potential (MEP) maps identified the negative charge localization at the central part of the WNG surface where selective coordination of Cs+ions is confirmed crystallographically. In‐depth theoretical investigation revealed a complex response of the WNG to the stepwise electron acquisition. The extended and contorted π‐surface of the WNG undergoes subtle swinging distortions that are accompanied by notable changes in the electronic structure and site‐dependent aromaticity of the resulting carbanions.

     
    more » « less
  3. Abstract

    The synthesis and structural analysis of a quintuple [6]helicene with a corannulene core is reported. The compound was synthesized from corannulene in three steps including a five‐fold intramolecular direct arylation. X‐ray crystallographic analysis revealed aC5‐symmetric propeller‐shaped structure and one‐dimensional alignment in the solid state. The enantiomers of the quintuple [6]helicene were successfully separated by HPLC, and the chirality of the two fractions was identified by CD spectroscopy. A kinetic study yielded a racemization barrier of 34.2 kcal mol−1, which is slightly lower than that of pristine [6]helicene. DFT calculations indicate a rapid bowl‐to‐bowl inversion of the corannulene moiety and a step‐by‐step chiral inversion pathway for the five [6]helicene moieties.

     
    more » « less
  4. Abstract

    Nanographene, a small piece of graphene, has attracted unprecedented interest across diverse scientific disciplines particularly in organic electronics. The biological applications of nanographenes, such as bioimaging, cancer therapies and drug delivery, provide significant opportunities for breakthroughs in the field. However, the intrinsic aggregation behavior and low solubility of nanographenes, which stem from their flat structures, hamper their development for bioapplications. Herein, we report a water‐soluble warped nanographene (WNG) that can be easily synthesized by sequential regioselective C−H borylation and cross‐coupling reactions of the saddle‐shaped WNG core structure. The saddle‐shaped structure and hydrophilic tetraethylene glycol chains impart high water solubility to the WNG. The water‐soluble WNG possesses a range of promising properties including good photostability and low cytotoxicity. Moreover, the water‐soluble WNG was successfully internalized into HeLa cells and promoted photoinduced cell death.

     
    more » « less